skip to main content


Search for: All records

Creators/Authors contains: "Aikawa, Elena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background The mechanical rupture of an atheroma cap may initiate a thrombus formation, followed by an acute coronary event and death. Several morphology and tissue composition factors have been identified to play a role on the mechanical stability of an atheroma, including cap thickness, lipid core stiffness, remodeling index, and blood pressure. More recently, the presence of microcalcifications (μCalcs) in the atheroma cap has been demonstrated, but their combined effect with other vulnerability factors has not been fully investigated. Materials and methods We performed numerical simulations on 3D idealized lesions and a microCT-derived human coronary atheroma, to quantitatively analyze the atheroma cap rupture. From the predicted cap stresses, we defined a biomechanics-based vulnerability index (VI) to classify the impact of each risk factor on plaque stability, and developed a predictive model based on their synergistic effect. Results Plaques with low remodeling index and soft lipid cores exhibit higher VI and can shift the location of maximal wall stresses. The VI exponentially rises as the cap becomes thinner, while the presence of a μCalc causes an additional 2.5-fold increase in vulnerability for a spherical inclusion. The human coronary atheroma model had a stable phenotype, but it was transformed into a vulnerable plaque after introducing a single spherical μCalc in its cap. Overall, cap thickness and μCalcs are the two most influential factors of mechanical rupture risk. Conclusions Our findings provide supporting evidence that high risk lesions are non-obstructive plaques with softer (lipid-rich) cores and a thin cap with μCalcs. However, stable plaques may still rupture in the presence of μCalcs. 
    more » « less
  2. Abstract

    In pursuit of a suitable scaffold material for cardiac valve tissue engineering applications, an acellular, electrospun, biodegradable polyester carbonate urethane urea (PECUU) scaffold was evaluated as a pulmonary valve leaflet replacement in vivo.In sheep (n = 8), a single pulmonary valve leaflet was replaced with a PECUU leaflet and followed for 1, 6, and 12 weeks. Implanted leaflet function was assessed in vivo by echocardiography. Explanted samples were studied for gross pathology, microscopic changes in the extracellular matrix, host cellular re‐population, and immune responses, and for biomechanical properties. PECUU leaflets showed normal leaflet motion at implant, but decreased leaflet motion and dimensions at 6 weeks. The leaflets accumulated α‐SMA and CD45 positive cells, with surfaces covered with endothelial cells (CD31+). New collagen formation occurred (Picrosirius Red). Accumulated tissue thickness correlated with the decrease in leaflet motion. The PECUU scaffolds had histologic evidence of scaffold degradation and an accumulation of pro‐inflammatory/M1 and anti‐inflammatory/M2 macrophages over time in vivo. The extent of inflammatory cell accumulation correlated with tissue formation and polymer degradation but was also associated with leaflet thickening and decreased leaflet motion. Future studies should explore pre‐implant seeding of polymer scaffolds, more advanced polymer fabrication methods able to more closely approximate native tissue structure and function, and other techniques to control and balance the degradation of biomaterials and new tissue formation by modulation of the host immune response.

     
    more » « less
  3. Abstract

    Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are released from cells of the cardiovascular system, and are considered important mediators of intercellular and extracellular communications. Two types of EVs of particular interest are exosomes and microvesicles, which have been identified in all tissue and body fluids and carry a variety of molecules including RNAs, proteins, and lipids. EVs have potential for use in the diagnosis and prognosis of cardiovascular diseases and as new therapeutic agents, particularly in the setting of myocardial infarction and heart failure. Despite their promise, technical challenges related to their small size make it challenging to accurately identify and characterize them, and to study EV-mediated processes. Here, we aim to provide the reader with an overview of the techniques and technologies available for the separation and characterization of EVs from different sources. Methods for determining the protein, RNA, and lipid content of EVs are discussed. The aim of this document is to provide guidance on critical methodological issues and highlight key points for consideration for the investigation of EVs in cardiovascular studies.

     
    more » « less